Polynomial Transformation Method for Non-Gaussian Noise Environment
نویسندگان
چکیده
Signal processing in non-Gaussian noise environment is addressed in this paper. For many real-life situations, the additive noise process present in the system is found to be dominantly non-Gaussian. The problem of detection and estimation of signals corrupted with nonGaussian noise is difficult to track mathematically. In this paper, we present a novel approach for optimal detection and estimation of signals in non-Gaussian noise. It is demonstrated that preprocessing of data by the orthogonal polynomial approximation together with the minimum errorvariance criterion converts an additive non-Gaussian noise process into an approximation-error process which is close to Gaussian. The Monte Carlo simulations are presented to test the Gaussian hypothesis based on the bicoherence of a sequence. The histogram test and the kurtosis test are carried out to verify the Gaussian hypothesis.
منابع مشابه
A New Poisson Noisy Image Denoising Method Based on the Anscombe Transformation
In this paper, we propose a new denoising method for Poisson noise corrupted images based on the Anscombe variance stabilizing transformation (VST) with a new inversion. The VST is used to approximately convert a Poisson noise image into a Gaussian distributed image, so that the denoising methods aiming at Gaussian noise can be applied subsequently. The motivation for the new inversion originat...
متن کاملFIR Filtering of State-Space Models in non-Gaussian Environment with Uncertainties Plenary Lecture
This paper examines the recently developed p-shift iterative unbiased Kalman-like algorithm intended for filtering (p = 0), prediction (p > 0), and smoothing (p < 0) of linear discrete time-varying state-space models in non Gaussian environment with uncertainties. The algorithm is designed to have no requirements for noise and initial conditions and becomes optimal on large averaging intervals....
متن کاملA ug 2 00 8 An intermediate regime for exit phenomena driven by non - Gaussian Lévy noises ∗
A dynamical system driven by non-Gaussian Lévy noises of small intensity is considered. The first exit time of solution orbits from a bounded neighborhood of an attracting equilibrium state is estimated. For a class of non-Gaussian Lévy noises, it is shown that the mean exit time is asymptotically faster than exponential (the well-known Gaussian Brownian noise case) but slower than polynomial (...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملBlind Signal Separation in the Presence of Gaussian Noise
A prototypical blind signal separation problem is the so-called cocktail party problem, with n people talking simultaneously and n different microphones within a room. The goal is to recover each speech signal from the microphone inputs. Mathematically this can be modeled by assuming that we are given samples from an n-dimensional random variable X = AS, where S is a vector whose coordinates ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1401.5580 شماره
صفحات -
تاریخ انتشار 2011